
© 2018 JETIR June 2018, Volume 5, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR1806858 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 433

Improve Software Development Quality Using

ML Practices

Lakshmisri Surya

Sr. Data Scientist & Department of Information Technology.

Abstract

In order to keep up with innovations and incredibly quickly

software development, research methods have evolved over

the past four decades. Companies today are rapidly investing

in machine learning (ML) to remain competitive. The

development of applications is fraught with difficulties, and

many are now designing AI-based solutions to address these

challenges. Additionally, the ability that the system holds to

learn inherently adds more uncertainties to the entire system.

Considering the rise in popularity of implementing ML into

the systems, there are still challenges on how the addition

interferes with software development practices. In order to

improve software functionality and retain its efficacy, the

software is an object that continues to evolve and undergo

continual changes. Some difficulties are faced during the

production of applications, often with advanced preparation,

transparent reporting, and proper process management.

Such bugs impair the consistency of applications in one

direction or the other, and may lead to failure. Therefore,

everyone has to monitor and mitigate these flaws in

information engineering in today's competition. Models for

software prediction are usually used to map the dynamics of

software groups vulnerable to alteration. The paper will also

drive the paper to rigorous experimentation from literature

reviews to discover all sorts of data collection alternatives.

The main views addressed are; machine learning as a

technology used in enhancing software development and the

parameters quantification which impacts the productivity,

functionality, and quality of software.

Key Words

Machine learning, software development, frameworks.

Introduction

Over the past three decades, machine learning (ML) has

advanced significantly, from laboratory fascination to

realistic application for mainstream industrial use. Inside AI

and ML has emerged as the tool of choice for robot control,

natural language processing, speech recognition, computer

vision, and other applications to create practical software

products. Machine learning resources, especially software

programs with machine language modules and structures,

tools, and databases that include ML functions, can be

applied to a system in many ways (Salay et al., 2017). A

diverse pattern has surfaced whereby it is relatively easy and

inexpensive to build and install ML technologies. Still, it is

difficult and costly to sustain them with time due to

technological debt. It is because, these types of systems have

all the challenges associated with non-ML systems, in

addition to an extra range of unique ML problems which

needs to be appropriately addressed. There are also unclear

assumptions concerning future evidence and ML future

effects (Luo, 2016). Current studies have placed more effort

into developing platforms for checking and fixing machine

learning algorithms and designing structures and ecosystems

that enable ML applications to solve ML specific problems.

Despite this progress, tech professionals are also trying to

quantify and increase efficiencies using ML's software

creation approaches. For the cost-effective production of

high-quality and stable ML applications, standardization and

http://www.jetir.org/

© 2018 JETIR June 2018, Volume 5, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR1806858 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 434

operationalization of software development processes are

very important (Prasad et al., 2015). A multi-faceted and

dynamic activity is involved in the design of ML based

software. Various types of ML implementation processes

have also been suggested. These approaches share many

similar main steps: monitoring and production data

modeling, data curation, and context understanding. Our

modern period of digital technology has had a whole new,

broad effect on ML. This means that a vast volume of data

and a high degree of automation accelerate any need for

smart data connection and assessment. Computer solutions

have been much more challenging in the last 10 to 15 years.

Vast numbers of individual elements are linked to each other

through APIs in several modern systems (Das & Behera,

2017). Also, even basic tasks have to be done through a

whole variety of different implementations. As a result, this

does not simplify the software development process.

Therefore, machine learning makes all these things easier

through; automatic migration and refactoring, clean code,

intelligent assistants in programming, automatic error

detection, and troubleshooting.

How Machine Learning Will Enhance Software

Development

Machine learning is an AI application technique whereby,

from its knowledge, a device learns and enhances its

understanding. Also, it does not require a specified type of

programming. The critical purpose of machine learning is to

make machines understand and learn without human

involvement (Dwivedi et al., 2016). The device requires data

for the operation in the form of monitoring. In forecasting

outcomes, the machine learns to identify trends in the data

and continually improves it to get better over time. It's just

wrong to keep such a robust technology like Machine

Learning apart from the software development model (Luo,

2016). There are various drawbacks attached to the

traditional development of software techniques as it is

difficult for software engineers to code to a certain degree in

a precedent manner. Teaching a program to evaluate the raw

data and come up with logic and patterns seems more

straightforward.

Machine learning changes the learning process in software

development in the following ways: Decision making and

prototyping, which required months and even years of

preparation, traditionally, to come up with a realistic

application. Machine learning, though, helps evaluate the

historical success of programs already functioning to identify

alternatives (Kim et al., 2016). This benefits the production

of apps as it fastens the entire operation to deliver full benefit

and lower risks. Under control deployment, from the

viewpoint of software design, software deployment is

fundamental. Developers update their applications and offer

a new version at this stage, which has the likelihood of

destroying it (Salay et al., 2017). Machine learning, however,

decreases the chances of being destroyed. For any bugs and

failures, developers should test their apps. It also handles

data security, fixing bugs, and errors whereby ML

algorithms promote accelerated identification and warning of

violations. When machine learning works well for them,

designers do not need to spend their brains discovering

glitches and bugs. Research methods using ML quickly

detect and correct bugs.

Machine learning also aids data science since it is difficult to

develop one of the most potent machine learning algorithms.

In order to come up with clustering algorithms, ML

development uses machine learning itself. It also lets

developers identify bugs in their code by detecting the

inevitable glitches (Tantithamthavorn et al., 2016). It also

helps in data management since ML can simulate the nature

of data and its position. As compared to standard databases,

this makes it much quicker and uses less memory. In order to

http://www.jetir.org/

© 2018 JETIR June 2018, Volume 5, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR1806858 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 435

track and find any problems, app engineers will also be

running. Less data means fewer monitoring opportunities

and efforts for quicker debugging. ML also brings about

efficient codes as it is better to update a million lines with

several hundred by machine learning. Not only does this

reduce the time involved with coding, but it also renders the

system more sustainable (Ghaffarian & Shahriari, 2017). As

the software is open to improvements and corrections,

teaching also renders the code increasingly flexible, which is

why, today, pioneers of ML carry on a new role in training a

machine to perform a particular task.

In software development activities, Artificial intelligence

demonstrates that they are good at increasing performance.

Engineers are implementing these innovations as they realize

how useful they are. These tools are influential in nurturing

talented programmers and assisting developers in their

applications to find and correct bugs (Luo, 2016). Such

solutions also offer cloud-based IDEs for designers, smart

coding tools, and the ease of implementation control. Much

like the experienced ones, young programmers create a

significant part of the development culture. AI intends to

give these designers a chance to obtain more perspectives on

how effective software programs can be designed. AI-

powered tools exist that allow designers to focus on software

projects (Khanum et al., 2015). These instruments also

provide them with the ease of exchanging experiences with

young and seasoned developers, helping them learn. In order

to advance their careers, young programmers should

maximize the use of such resources.

How Machine Learning Ensure Quality on Software

Development

Machine learning techniques embody a data framework that

takes data from a particular set and makes assumptions about

the new data set through having to learn from the data. In

order to work mostly on the current data set and predict the

trends for the fresh one, machine learning algorithms are

developed (Lenarduzzi et al., 2017). ML uses neural network

models for quality testing. Neural networks are a collection

of structured algorithms that are modified and per the

learning method. To develop outcomes and then compare

them with set outcomes, the learning process requires input

parameters. In producing fast and reliable performance,

programs use automation to extract trends from data and

interpret the overwhelming amount of data. It is an essential

accomplishment in scientific software engineering science to

develop effective machine-learning evaluation models, but

that is not the only one (Pandey et al., 2017). Equivalence of

such models is still required, extensively in software

engineering, where it is already a problem to explore and

capture information. Many other algorithms are chosen and

run-on software data obtained from intermediate programs

coming from different ML approaches. Most of these

methods deliver very high conceptual output models, and

others offer very intelligible and interpretable models.

ML professionals identify market fields that will

significantly benefit from ML designs and the relevant

information in the comprehension process. ML professionals

can consult with clients about what ML designs can handle

in terms of standards and what it is not capable to handle

(Kim et al., 2016). Most notably, through the execution of

preliminary trials in a clear program context, ML

professionals frame and scale the implementation activities.

The process of developing a machine learning system

involves four essential steps. The data curation phase

consists of collecting data from various sources, creating test

datasets, training, validation, and pre-processing of data.

Since knowledge always comes from multiple sources, ML

professionals can sew data together and cope with lost or

incomplete data by pre-processing data (Cline et al., 2017).

Data marking is needed to add labels that are software

http://www.jetir.org/

© 2018 JETIR June 2018, Volume 5, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR1806858 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 436

oriented to and record to construct an acceptable dataset for

supervised learning algorithms.

The feature engineering phase cooperates in all activities that

reshape the specified data in a format that is easy to

understand, such as feature selection and extraction for ML

techniques. ML professionals tune, train, and choose ML

models using the preferred attributes during model

development (Zanoni et al., 2015). The process modeling

phase involves model evaluation, model training, and feature

engineering. Trying to adjust configurations and finding

possible problems with the existing model or prior stages are

used in model tuning. In model evaluation, the performance

model on the test dataset is analyzed by clinicians using pre-

defined evaluation steps. ML professionals export the design

into a pre-defined framework during the development and

tracking phase and typically construct a Web or an API

application with the system as an interface (Pandey et al.,

2017). ML professionals also intend for the model to be

retrained with new results. The output of the model is

checked continuously for anomalies or unintended

consequences, while the input data is observed to decide if

they shift in time to be inappropriate for the system.

Software design using Machine Learning

Firstly, for ML structures, the high-level architecture design

is relatively fixed. Implementation, data modeling, function

engineering, data cleaning, and data compilation usually

comprise ML systems' design. The architecture for non-ML

software applications, on the other hand, is a more

innovative method that incorporates multiple architectural

separations of software products and produces definitions of

actions (Khanum et al., 2015). The clustered architecture

style is commonly favored for ML systems due to a large

amount of data. In structural and detailed architecture, a

distributed architectural style typically contributes to

complexities. Secondly, in modules, ML systems put less

focus on low coupling versus non-ML software applications.

Even though various components have independent features

and functionality in ML systems, they are tightly interrelated

(Jindal et al., 2015). For example, data modeling output is

based on data processing. Thirdly, for ML frameworks,

comprehensive architecture is more versatile than non-ML

program schemes. As a result, the thorough modeling of ML

structures will be time-consuming and iteratively carried out.

Software developers appear to perform plenty of trials in

order to design an optimal model.

Maintenance of Software developed Using Machine

Learning

According to research, it is evident that minimal effort is

required to maintain ML systems compared to traditional

software systems. It is because, ML systems run through a

predictable decrease in terms of performance with time.

Therefore, in aiding robust results, ML systems always need

to support automated maintenance (Ghaffarian & Shahriari,

2017). This means that, once a decrease in performance

occurs, the system perceives the degradation and offers

training to new models of data in an online way by

implementing the latest data that has emerged. Furthermore,

the management of ML systems configuration cooperates in

a vast amount of content as compared to software that does

not contain ML design. The main reason behind this is that

the ML frameworks cooperate in not only the specific codes

but also parameters, hyperparameters, and data. When

designing machine learning-based systems, involves iteration

and experimentation (Parra et al., 2015). Also, the models of

performance would thus vary per the model. Also, to find an

optimal combination of all the involved parts that bring

about optimal performance, management of configuration is

essential to keeping track of hyperparameters, data,

architecture, algorithm choice, and associated tradeoffs and

models. As a result, the control of structure for machine

http://www.jetir.org/

© 2018 JETIR June 2018, Volume 5, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR1806858 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 437

learning systems is rendered complex as compared to

software designs that do not implement ML designs.

ML algorithms have proven to have the most significant

value practically in various domains of software

development and maintenance. They are implemented to

address poorly managed problems, and limited knowledge

exists for humans to develop more effective algorithms.

Also, they are used in cases where large databases contain

various regularities that are implicit to discovery and in

situations where the software can adapt to the conditions that

are changing (Malhotra, 2015). Fortunately, the sector of

software engineering is rendered a most fertile ground where

most of the software developments and tasks that involve

maintenance of software developed are formulated as

problems that are learned and approached using algorithms

of learning. Configuring data management is a complicated

art of software development. The general strategy is to

model system data into a transparent format that

configuration information corresponds to source code form

(Tantithamthavorn et al., 2016). For machine learning

techniques, this general strategy still applies, but is difficult

to enforce, since the device information scale is too big

relative to conventional systems.

Quality is indeed crucial in creating a strong and stable ML

framework, in addition to information quantity. Garbage in,

garbage out represents what is identified from machine

learning software as they are fed into the software. Actual

information consists of missed values, imbalanced

information, outliers, etc. Until creating models, ML

professionals must analyze the data (Singh & Chug, 2017).

Future research could develop tools for visualization of data

that provide data overview, help to locate various

irregularities, allow practitioners to concentrate on where

cleaning is needed for the data. Good-quality models during

design, moreover, will not perpetually guarantee the highest

performance of the systems (Cline et al., 2017). A machine

learning model deteriorates in precision inside a constantly

changing world as soon as the program is put into

development. Professionals are supposed to realize that there

has never been a finished iteration of a ML algorithm that

require to be continuously modified and changed,

introducing new data and retraining models. For related

development, online reviews and output assessment of ML

systems are promising fields.

How the Research on Improvement of Quality Software

Development Using ML will help the United States

Machine learning is rendering the process of deploying,

developing, and designing software that is cheaper, better,

and faster. As a result, this will significantly improve all

United States operations that involve quality software

designs. Additionally, the research will help the U.S. make

software coders, business analysts, testers, and project

managers more effective and more productive, thus enabling

the nation to develop high-quality software at meager costs.

Additionally, machine learning may become one of the most

crucial factors that will help the U.S. meet its rising demands

for custom made software. Also, deploying and developing

custom software is one of the essential elements of the

companies' level of innovation within the U.S., resulting in

high performing organization designing most of their most

critical solutions related to software. Furthermore, the

software that implements machine learning in its design

process promises to limit all the country's low software

quality (Das & Behera, 2017). The new software developed

by machine learning processes holds a remarkable impact on

the process of software development in the nation, such as

decreasing the number of software developers, automatically

generating more than half of the required tests for assurance

of quality and catching bugs even before testing and

reviewing the codes.

http://www.jetir.org/

© 2018 JETIR June 2018, Volume 5, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR1806858 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 438

Conclusion

Using ML to improve software development quality has

been a theoretical concept for a very long time. Recently,

organizations and institutions are implementing the idea

effectively. Also, most of the ML technologies remain within

their infancy regarding what most designers wish will come

to be a reality. Furthermore, the benefits of implementing

ML in software development are more apparent. The only

thing remaining is allocating the resources, which are vital in

building the routines and algorithms. It is also a

recommendation to companies that are already implementing

ML initiatives to extend them in software development and

testing to be at peace with the revolution of ML, which is

becoming part of the niche. This research is an embryonic

step in supporting ML systems development, serving as a

basis for the upcoming research in the field, and suggestions

that support designers in essential development tasks. ML

clinicians should adjust their attitude to overcome confusion,

and tolerate the uncertainty of preliminary trials and ML

algorithms' randomness. They may benefit from scientific

programming, which often includes the creation of

exploratory processes. Also, for ML practitioners to gaining

reproducibility, version management tools for code, data and

variables will play a crucial role. Machine learning experts

should also make an appropriate effort to maintain the details

for use in software development. In order to promote the

effective creation of ML applications, future research should

make additional effort to include collaborative and real-time

methods for debugging. Online input and output assessment

for machine learning-based systems are the most fertile

fields for a prospective study to cope with data's quick

advancement.

References

[1] Cline, B., Niculescu, R. S., Huffman, D., & Deckel, B. (2017,

January). Predictive maintenance applications for machine

learning. In 2017 annual reliability and maintainability

symposium (RAMS) (pp. 1-7). IEEE.

[2] Das, K., & Behera, R. N. (2017). A survey on machine learning:

concept, algorithms and applications. International Journal of

Innovative Research in Computer and Communication

Engineering, 5(2), 1301-1309.

[3] Dwivedi, A. K., Tirkey, A., Ray, R. B., & Rath, S. K. (2016,

November). Software design pattern recognition using machine

learning techniques. In 2016 IEEE Region 10 Conference

(TENCON) (pp. 222-227). IEEE.

[4] Ghaffarian, S. M., & Shahriari, H. R. (2017). Software

vulnerability analysis and discovery using machine-learning and

data-mining techniques: A survey. ACM Computing Surveys

(CSUR), 50(4), 1-36.

[5] Jindal, R., Malhotra, R., & Jain, A. (2015, September).

Predicting Software Maintenance effort using neural networks.

In 2015 4th International Conference on Reliability, Infocom

Technologies and Optimization (ICRITO)(Trends and Future

Directions) (pp. 1-6). IEEE.

[6] Khanum, M., Mahboob, T., Imtiaz, W., Ghafoor, H. A., & Sehar,

R. (2015). A survey on unsupervised machine learning

algorithms for automation, classification and

maintenance. International Journal of Computer

Applications, 119(13).

[7] Kim, M., Zimmermann, T., DeLine, R., & Begel, A. (2016, May).

The emerging role of data scientists on software development

teams. In 2016 IEEE/ACM 38th International Conference on

Software Engineering (ICSE) (pp. 96-107). IEEE.

[8] Lenarduzzi, V., Stan, A. C., Taibi, D., Tosi, D., & Venters, G.

(2017, September). A dynamical quality model to continuously

monitor software maintenance. In The European Conference on

Information Systems Management (pp. 168-178). Academic

Conferences International Limited.

[9] Luo, G. (2016). A review of automatic selection methods for

machine learning algorithms and hyper-parameter

values. Network Modeling Analysis in Health Informatics and

Bioinformatics, 5(1), 1-16.

[10] Malhotra, R. (2015). A systematic review of machine learning

techniques for software fault prediction. Applied Soft

Computing, 27, 504-518.

http://www.jetir.org/

© 2018 JETIR June 2018, Volume 5, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR1806858 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 439

[11] Pandey, N., Sanyal, D. K., Hudait, A., & Sen, A. (2017).

Automated classification of software issue reports using machine

learning techniques: an empirical study. Innovations in Systems

and Software Engineering, 13(4), 279-297.

[12] Parra, E., Dimou, C., Llorens, J., Moreno, V., & Fraga, A. (2015).

A methodology for the classification of quality of requirements

using machine learning techniques. Information and Software

Technology, 67, 180-195.

[13] Prasad, M. C., Florence, L., & Arya, A. (2015). A study on

software metrics based software defect prediction using data

mining and machine learning techniques. International Journal

of Database Theory and Application, 8(3), 179-190.

[14] Salay, R., Queiroz, R., & Czarnecki, K. (2017). An analysis of

ISO 26262: Using machine learning safely in automotive

software. arXiv preprint arXiv:1709.02435.

[15] Singh, P. D., & Chug, A. (2017, January). Software defect

prediction analysis using machine learning algorithms. In 2017

7th International Conference on Cloud Computing, Data Science

& Engineering-Confluence (pp. 775-781). IEEE.

[16] Tantithamthavorn, C., McIntosh, S., Hassan, A. E., &

Matsumoto, K. (2016). Comments on “Researcher bias: the use

of machine learning in software defect prediction”. IEEE

Transactions on Software Engineering, 42(11), 1092-1094.

[17] Zanoni, M., Fontana, F. A., & Stella, F. (2015). On applying

machine learning techniques for design pattern

detection. Journal of Systems and Software, 103, 102-117.

http://www.jetir.org/

